What is Atomic Theory?
Even though atomic theory today is a familiar cornerstone of modern science, like germ theory or evolution, throughout most of human history people believed that matter was probably continuous and could be broken down into arbitrarily small quantities. It wasn't until 1803, or possibly a bit before, that the English chemist John Dalton revived the old idea of atomic theory, and used it to solve various problems that chemists were grappling with at the time. Rather than any one experiment leading to the idea, it emerged from analysis of multiple experiments involving the properties of gases and chemical reactions. His atomic theory was popularized and confirmed experimentally over the course of the early 19th century.
Dalton's atomic theory had five main points:
1) All elements consist of minuscule particles called atoms.
2) All atoms of a given element have are identical to each other.
3) All atoms of a given element are different than those of other elements.
4) Atoms of one element combine with other elements to create compounds. They always combine in equal amounts.
5) Atoms cannot be created, divided, nor destroyed.
Most of the above is still accepted by scientists today, except for a few points. First, the discovery of nuclear fusion/fission and radioactivity prompted revision of point #2. Isotopes prove that atoms of the same element can actually have small differences due to a different number of neutrons. Also, the existence of ions with varying numbers of electrons also contradicts this point.
The fifth point is also invalidated by nuclear physics. Atoms can indeed by destroyed in nuclear chain reactions. The second item of point #4 is also quite incorrect, as, for instance, water is H2O, not HO. His insistence that atoms combine in equal amounts to create compounds held back acceptance of his theory for years. Regardless, from the viewpoint of today, Dalton contributed remarkably for his time, and his name continues to be revered by its associated with atomic theory.
In chemistry and physics, atomic theory is a theory of the nature of matter, which states that matter is composed of discrete units called atoms, as opposed to the obsolete notion that matter could be divided into any arbitrarily small quantity. It began as a philosophical concept in ancient Greece (Democritus) and India and entered the scientific mainstream in the early 19th century when discoveries in the field of chemistry showed that matter did indeed behave as if it were made up of particles.
The word "atom" (from the ancient Greek adjective atoms, 'indivisible']) was applied to the basic particle that constituted a chemical element, because the chemists of the era believed that these were the fundamental particles of matter. However, around the turn of the 20th century, through various experiments with electromagnetism and radioactivity, physicists discovered that the so-called "indivisible atom" was actually a conglomerate of various subatomic particles (chiefly, electrons, protons and neutrons) which can exist separately from each other. In fact, in certain extreme environments such as neutron stars, extreme temperature and pressure prevents atoms from existing at all. Since atoms were found to be actually divisible, physicists later invented the term "elementary particles" to describe indivisible particles. The field of science which studies subatomic particles is particle physics, and it is in this field that physicists hope to discover the true fundamental nature of matter.
Dalton proceeded to print his first published table of relative atomic weights. Six elements appear in this table, namely hydrogen, oxygen, nitrogen, carbon, sulfur, and phosphorus, with the atom of hydrogen conventionally assumed to weigh 1. Dalton provided no indication in this first paper how he had arrived at these numbers. However, in his laboratory notebook under the date 6 September 1803[6] there appears a list in which he sets out the relative weights of the atoms of a number of elements, derived from analysis of water, ammonia, carbon dioxide, etc. by chemists of the time.
It appears, then, that confronted with the problem of calculating the relative diameter of the atoms of which, he was convinced, all gases were made, he used the results of chemical analysis. Assisted by the assumption that combination always takes place in the simplest possible way, he thus arrived at the idea that chemical combination takes place between particles of different weights, and it was this which differentiated his theory from the historic speculations of the Greeks, such as Democritus and Lucretius.
The extension of this idea to substances in general necessarily led him to the law of multiple proportions, and the comparison with experiment brilliantly confirmed his deduction.[7] It may be noted that in a paper on the proportion of the gases or elastic fluids constituting the atmosphere, read by him in November 1802, the law of multiple proportions appears to be anticipated in the words: "The elements of oxygen may combine with a certain portion of nitrous gas or with twice that portion, but with no intermediate quantity", but there is reason to suspect that this sentence may have been added some time after the reading of the paper, which was not published until 1805.Compounds were listed as binary, ternary, quaternary, etc. (molecules composed of two, three, four, etc. atoms) in the New System of Chemical Philosophy depending on the number of atoms a compound had in its simplest, empirical form.
He hypothesized the structure of compounds can be represented in whole number ratios. So, one atom of element X combining with one atom of element Y is a binary compound. Furthermore, one atom of element X combining with two elements of Y or vice versa, is a ternary compound. Many of the first compounds listed in the New System of Chemical Philosophy correspond to modern views, although many others do not.
Dalton used his own symbols to visually represent the atomic structure of compounds. These have made it in New System of Chemical Philosophy where Dalton listed a number of elements, and common compounds.
Five main points of Dalton's atomic theory
- Elements are made of extremely small particles called atoms.
- Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties.
- Atoms cannot be subdivided, created, or destroyed.
- Atoms of different elements combine in simple whole-number ratios to form chemical compounds.
- In chemical reactions, atoms are combined, separated, or rearranged.
- When atoms combine in only one ratio, "..it must be presumed to be a binary one, unless some cause appear to the contrary".
Despite the uncertainty at the heart of Dalton's atomic theory, the principles of the theory survived. To be sure, the conviction that atoms cannot be subdivided, created, or destroyed into smaller particles when they are combined, separated, or rearranged in chemical reactions is inconsistent with the existence of nuclear fusion and nuclear fission, but such processes are nuclear reactions and not chemical reactions. In addition, the idea that all atoms of a given element are identical in their physical and chemical properties is not precisely true, as we now know that different isotopes of an element have slightly varying weights. However, Dalton had created a theory of immense power and importance. Indeed, Dalton's innovation was fully as important for the future of the science as Antoine Laurent Lavoisier oxygen-based chemistry had been.
Rutherford's model did not make any new headway in explaining the electron-structure of the atom; in this regard Rutherford merely mentioned earlier atomic models in which a number of tiny electrons circled the nucleus like planets around the sun, or a ring around a planet (such as Saturn). However, by implication, Rutherford's concentration of most of the atom's mass into a very small core made a planetary model an even more likely metaphor than before, as such a core would contain most of the atom's mass, in an analogous way to the Sun containing most of the solar system's mass. Rutherford's model was later corrected by Niels Bohr.
In atomic physics, the Bohr model, introduced by Niels Bohr in 1913, depicts the atom as a small, positively charged nucleus surrounded by electrons that travel in circular orbits around the nucleus—similar in structure to the solar system, but with electrostatic forces providing attraction, rather than gravity. This was an improvement on the earlier cubic model (1902), the plum-pudding model (1904), the Saturnian model (1904), and the Rutherford model (1911). Since the Bohr model is a quantum-physics–based modification of the Rutherford model, many sources combine the two, referring to the Rutherford–Bohr model.
The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen. While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model explain the reason for the structure of the Rydberg formula, it also provided a justification for its empirical results in terms of fundamental physical constants.
The Bohr model is a primitive model of the hydrogen atom. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics, and thus may be considered to be an obsolete scientific theory. However, because of its simplicity, and its correct results for selected systems (see below for application), the Bohr model is still commonly taught to introduce students to quantum mechanics, before moving on to the more accurate but more complex valence shell atom. A related model was originally proposed by Arthur Erich Haas in 1910, but was rejected. The quantum theory of the period between Planck's discovery of the quantum (1900) and the advent of a full-blown quantum mechanics (1925) is often referred to as the old quantum theory.